Discussion about this post

User's avatar
Overcoming Bias Commenter's avatar

Thanks, Robin. I think I now understand your point. But putting it aside for a moment (I'll come back to it), it looks to me that the mathematical reasoning in your post just isn't right, and that your conclusions don't follow from your assumptions. Let's consider a specific numerical example, with an asexual species and U(x)=x. Say the number of periods is 3000, and in each period the choices are R (risky) and C (conservative). If a creature chooses C, he is survived by 100 offspring. If a creature chooses R, he has 50/50 chance of either 1 offspring, or 1000 offspring. The risks are fully correlated within a period, so everyone who chooses R has the same number of offspring. Probabilities are independent across periods. This example satisfies your assumptions, right?

If u(x)=log(x), then creatures should choose C every period, since log(100)=2 > log(1)/2+log(1000)/2=1.5. But choosing R every period maximizes the expected population at the end of 3000 periods. To see this, the expected population of always choosing R is at least .5^3000 * 1000^3000 = 500^3000, which is the probability that r_t=1000 for 3000 periods, times the total population if that were to occur. Choosing C leads to a population of 100^3000 with probability 1, less than the expected population of choosing R. It seems clear that u(x) does not go to log(x) if U(x)=x.

Robin, can you check if my analysis is correct?

But either way, Sinn's math still stands, so let's go back to the question of whether modeling only fully correlated risks makes sense. First, we can check that Sinn's conclusions do apply in the example above: choosing R leads to a greater expected population, but with high probability the actual population will be less than choosing C. So it seems that evolution selects for u(x)=log(x) if we defined "select for" as Sinn's "evolutionary dominance" (ignoring MWI considerations for the moment). But what if the environment also has uncorrelated risks? Suppose that odd periods stay the same but in even periods, the risks of choosing R are completely uncorrelated. Then evolution should select for creatures with time-dependent utility: u(x,t)={x if t is even, log(x) if t is odd}.

In real life correlations of risks do not change this predictably with time, so under Sinn's formalism, evolution should select for creatures with dynamic utility functions that change depending on the creature's estimate of the degree of correlation of the risk in the decision he faces. But that abuses the concept of utility function beyond recognition. Consider the analogy with the theory of investments, where there aren't utility functions over the outcomes of individual investments (changing depending on their risk characteristics). Instead one has an utility function over one's income stream, and risk aversion or neutrality on individual investments emerge from selecting strategies to maximize expected utility under that fixed utility function.

So, I think it makes more sense to say that evolution also selects for behavioral strategies, not utility functions. These strategies tended to maximize expected descendants when risks were uncorrelated and expected log descendants when risks were correlated. That fits better anyway with the idea that we are adaptation executors, not utility maximizers, and perhaps explains why we don't seem to have direct preferences over the number of our descendants.

Expand full comment
Robin Hanson's avatar

Wei, one can decompose arbitrary risks into correlated and uncorrelated risks, and preferences can treat those components differently. Since it seems clear how preferences treat the uncorrelated part, the issue is how it treats the correlated part. For the purpose of studying that question it is as I said natural and appropriate to study a model of fully correlated risks.

Expand full comment
69 more comments...