Imagine a mirror reversed cell, made of mirror-reversed molecules. If it gained energy via photosynthesis, or via special adaptations that enable it to eat ordinary life, the fact that it was immune to ordinary predators and disease would give it a huge advantage; it could take over much of the biosphere. Sounds like a good reason not to make mirror cells right? Unfortunately, there are now big efforts to develop mirror cells, because they’d be a handy biotech tool for pumping out lucrative mirror proteins. Yes this is a real gain, and yes there are ways to try to stop mirror cells from getting loose and destroying the biosphere. But really, the gains here seem easily outweighed by the risks. This is a pretty clear case justifying strong global regulation or bans. Alas, I can find no movement in this direction. Details:
A life-form … based on mirror-image versions of earthly proteins and DNA. … If it worked, those new cells … might also open up new avenues of discovery in materials science, fuel synthesis, and pharmaceutical research. On the down side, though, mirror life wouldn’t have any predators or diseases to limit its reproduction. …
A catastrophe was under way across the Charles River at Genzyme, one of the largest biotech companies in the world. … A virus that disrupts cell reproduction infected one of the bioreactors. The entire plant had to be shut down. … When Church talks about mirror life’s quirky advantages, invulnerability to this kind of mishap is high on his list. “Viruses can’t touch a mirror cell,” … This makes mirror life a potential workhorse for biotech. … Church has been hacking the ribosome. … His plan is to make one that reads regular RNA transcripts of genes but can string together wrong-handed amino acids to form mirror proteins. … Church and his team have cracked the first step. … Last year his team got a synthetic ribosome to self-assemble and produce luciferase, the protein that makes fireflies glow. And he has a library of mutant ribosomes that have the right kind of sockets—they’ll accept mirror amino acids. This is where the money comes in. Some of the most valuable drugs are actually tiny proteins that include wrong-handed amino acids—like the immunosuppressant cyclosporine. To manufacture it, pharmaceutical companies have to rely on an inefficient and expensive fungus. A hacked ribosome modified to handle both normal and mirror amino acids could crank out the stuff on an industrial scale. …
Church thinks even bigger. A manufacturing ribosome would be great, but a fully domesticated mirror cell—able to synthesize more-complicated stuff—would change everything. … vats of virus-proof mirror cells could pump out biofuel, lay down nano-size organic circuitry, and even extrude organic cement foundations for skyscrapers. …
Of course, mirror life could also kill us all. … Just as viruses from our side of the mirror can’t infect it, mirror pathogens can’t infect us. … They might be poisonous, though. … To a mirror cell, … there’s just not enough nutrition for them in the wild. … On the other hand, if mirror cells somehow evolved—or were engineered—to consume normal fats, sugars, and proteins, we might have a problem. … Mirror cells would slowly convert edible matter into more of themselves. … If mirror cells acquired the ability to photosynthesize, we’d be screwed. … All it would take would be a droplet of mirror cyanobacteria squirted into the ocean. Cyanobacteria are at the base of the ocean’s food pyramid, converting sunlight and carbon dioxide into more of themselves … That would wipe out the global ocean ecology. …
“I would be the first to say that we shouldn’t make a photosynthetic mirror cell,” Church says. “But I’m reluctant to have a moratorium on something that doesn’t exist yet.” He says he’d build safeguards into his mirror cells so they’d perish without constant care. And the advances in synthetic biology required to transform those first delicate mirror cells into anything that could survive in the wild are even more remote.
This is just silly. If there is one thing we've learned in recent years it's that everywhere there is energy and water on earth there is life feeding on that energy. Utilizing the energy stored in a mirror photosynthetic life form would be far less difficult than harassing the energy from deep sea ocean vents.
I mean fuck worst comes to worst you can harness energy super inefficently by gather the microbes up and burning them. Indeed, I suspect there are already bacteria that can metabolize these mirror cells (perhaps inefficently) and would quickly enter into symbiotic relationships with many ocean lifeforms.
It might be a catastrophe for whales and other large ocean going vegetarians but hardly the end of the world. Hell, as some scientists keep pointing out WE DON'T KNOW THEY DON'T ALREADY EXIST!! Our current detection mechanisms aren't really set up to look for mirror organisms.
Moreover, the idea that they would even manage to hold their own against non-mirror organisms is sketchy. Through mechanisms like bacterial gene swapping and incorporation of genes from viruses the non-mirror organisms benefit from a vast evolutionary economy of scale. Indeed, it might well be a simple economy of scale issue rather than any rarity in the production of new life that explains the dominance of the current chirality. Immunity to a few viruses isn't that big a deal compared with the jump start you can get sharing beneficial mutations (even extremely indirectly and rarely).
It occurred to me last night that this may already have happened (dumping photosynthetic mirror-bacteria in the ocean). Maybe that's the great filter!